| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 
 | 
 
 
 
 
 
 
 
 
 
 
 import random
 import os,sys,time
 
 
 import numpy as np
 from numpy import *
 from numpy import linalg as La
 
 class MatrixDecomp:
 
 Time = 0
 Mode = "NULL"
 MatA = "No Input"
 bak_MatA = "temp"
 Show_Process = False
 
 def __init__(self):
 self.Time = time.localtime(time.time())
 
 def setMatA(self, inp):
 
 if isinstance(inp, np.ndarray):
 self.MatA = inp
 elif isinstance(inp, list):
 self.MatA = np.array(inp)
 elif isinstance(inp, str):
 if os.path.exists(inp):
 self.MatA = np.array(self.readFile(inp))
 elif os.path.exists(inp + '.txt'):
 self.MatA = np.array(self.readFile(inp + '.txt'))
 else:
 print "Invalid Input"
 self.bak_MatA = self.MatA
 
 def MatDecomp(self, inp):
 self.Mode = inp
 try:
 if inp.upper() == "LU": return self.LU_Decomp(self.MatA)
 if inp.upper() == "GS": return self.GS_Decomp(self.MatA)
 if inp.upper() == "HH": return self.HH_Decomp(self.MatA)
 if inp.upper() == "GV": return self.GV_Decomp(self.MatA)
 return "Invalid Decomp Type. (LU/GS/HH/GV)"
 except Exception,e:
 return "Decomposition Error for %s" % str(e)
 
 def Row_Swap(self, mat, ra, rb):
 ret = mat
 if mat.ndim == 1:
 ret[ra], ret[rb] = mat[rb], mat[ra]
 if mat.ndim == 2:
 ret[[ra, rb],:] = mat[[rb, ra],:]
 return ret
 
 def Col_Swap(self, mat, ca, cb):
 ret = mat
 if mat.ndim == 1:
 ret[ca], ret[cb] = mat[cb], mat[ca]
 if mat.ndim == 2:
 ret[:,[ca, cb]] = mat[:,[cb, ca]]
 return ret
 
 def MaxLine(self, colomn, row):
 ret = row
 for idx in range(row, colomn.__len__()):
 if abs(colomn[idx]) > abs(colomn[ret]):
 ret = idx
 return ret
 
 def LU_Operation(self, A, cur):
 (rSize, cSize) = A.shape
 for r in range(cur+1, rSize):
 A[r][cur] = A[r][cur] / A[cur][cur]
 for c in range(cur+1, cSize):
 A[r][c] = A[r][c] - A[r][cur] * A[cur][c]
 return A
 
 def LU_GetAns(self, P1D, A):
 (rSize, cSize) = A.shape
 
 P = np.zeros([rSize, rSize])
 for idx in range(rSize):
 P[idx][P1D[idx]-1] = 1
 L = np.eye(rSize, cSize)
 U = np.zeros([rSize, cSize])
 
 for r in range(rSize):
 for c in range(cSize):
 if r <= c : U[r][c] = A[r][c]
 else : L[r][c] = A[r][c]
 return {'P':P, 'L':L, 'U':U}
 
 def LU_Decomp(self, A):
 (rSize, cSize) = A.shape
 if rSize!=cSize :
 print "> LU_Decomp needs a Nonsingular Square Matrix."
 print "> Extend Matrix into a Square Matrix filled by zero."
 Size = max(rSize, cSize)
 Zero = np.zeros([Size,Size])
 Zero[:rSize,:cSize] = np.copy(A)
 A, (rSize, cSize) = np.copy(Zero), (Size, Size)
 print "> Current Matrix_A = \n", A
 P = np.arange(rSize) + 1
 for r in range(rSize):
 
 idxML = self.MaxLine(A[:,r], r)
 A = self.Row_Swap(A, idxML, r)
 P = self.Col_Swap(P, idxML, r)
 A = self.LU_Operation(A, r)
 if self.Show_Process:
 print 'Calculation[%d]:\nP = ' % r, P, '^T\nA = \n', A
 return self.LU_GetAns(P,A)
 
 def GS_Decomp(self, A):
 (rSize, cSize) = A.shape
 Q, R = np.copy(A), np.zeros([rSize, cSize])
 for c in range(cSize):
 for r in range(c):
 if r < c:
 
 R[r][c] = np.dot(np.transpose(Q[:,r]), A[:,c])
 Q[:,c] = Q[:,c] - R[r][c] * Q[:,r]
 R[c][c] = La.norm(Q[:,c])
 Q[:,c] = Q[:,c] / R[c][c]
 if self.Show_Process:
 print 'Calculation[%d]:\nQ = \n' % c, Q, '\nR = \n', R
 return {'Q':Q, 'R':R}
 
 def HH_Decomp(self, A):
 (rSize, cSize) = A.shape
 P = np.eye(rSize, cSize)
 for c in range(cSize):
 MatA, MatU = np.copy(A[c:,c:]), np.copy(A[c:,c])
 MatU[0] = MatU[0]+La.norm(MatU) if MatU[0]<0 else MatU[0]-La.norm(MatU)
 MatU.shape = (1, MatU.shape[0])
 MatU = np.transpose(MatU)
 MatR = np.eye(MatU.shape[0])
 
 UTU = np.dot(np.transpose(MatU), MatU)
 MatR = MatR - 2.0 * (
 (np.dot(MatU, np.transpose(MatU)) / UTU) if UTU!=0 else 0
 )
 MatA = np.dot(MatR, MatA)
 R = np.eye(rSize, cSize)
 R[c:,c:] = np.copy(MatR)
 P = np.dot(R, P)
 A[c:,c:] = np.copy(MatA)
 if self.Show_Process:
 print 'Calculation[%d]:\nR%d = \n' % (c+1,c+1), MatR, '\nR%dA%d = \n' % (c+1,c+1), MatA, '\nCurrent P = \n', P
 return {'Q':np.transpose(P), 'R':A }
 
 def GV_Rotate(self, A, i, j):
 (rSize, cSize) = A.shape
 ret = np.eye(rSize, cSize)
 upValue = sum(item**2 for item in A[j:i,j])
 c = upValue**0.5 / (upValue + A[i][j]**2)**0.5
 s = A[i][j] / (upValue + A[i][j]**2)**0.5
 ret[i][i], ret[j][j] = c, c
 ret[i][j], ret[j][i] = -s, s
 return ret
 
 def GV_Decomp(self, A):
 (rSize, cSize) = A.shape
 U = np.eye(rSize, cSize)
 for c in range(cSize):
 for r in range(c+1, rSize):
 if A[r,c] != 0:
 rot = self.GV_Rotate(A,r,c)
 U = np.dot(rot, U)
 A = np.dot(rot, A)
 if self.Show_Process:
 print 'Calculation[%d,%d]:\nU%d%d = \n' % (r+1,c+1,r+1,c+1,), rot, '\nCurrent U = \n', U, '\nCurrent A = \n', A
 return {'Q':np.transpose(U), 'R':A }
 
 def readFile(self, filename):
 
 with open(filename,'r') as f:
 ret = []
 lines = [ line for line in f.readlines() ]
 for each in lines :
 line = [ float(num) for num in each.split() ]
 ret.append(line)
 return ret
 
 def getInput(self, inp='Default'):
 print "> Current Selection is: <%s>" % inp
 
 if inp.upper() == 'DEFAULT':
 
 print "> Please show me the Matrix for Decomposition"
 print "> It can be a list or path to a Matrix_File"
 print "> Example: [[1,0],[0,1]] or \"A.txt\", \"LU\" etc."
 ret = input("The Matrix is: ")
 elif inp.upper() == 'RANDOM':
 
 print "> Please show me the Matrix's Size, split by \',\' "
 print "> Example: 5,3 or 7,7"
 sz = raw_input("The Matrix's Size: ").split(',')
 r,c = int(sz[0]), int(sz[1])
 
 ret = random.randint(0,9, size=(r,c))
 elif inp.upper() == 'MODE':
 
 print "> Please Select Decomposition Type"
 print "> Example: LU GS HH or GV"
 ret = raw_input("Type of the Matrix Decomposition is: ")
 elif inp.upper() == 'HELP':
 print """
 > Help v1.0.0 Authured by Chendian / okcd00
 
 > mdp.Show_Process
 > 该参数控制是否输出中间计算过程, 默认为False, 可在Main函数中改为True
 
 > mdp.setMatA(mdp.getInput('xxx'))
 > 目前已经编码的合法参数为default, random, mode, help
 """
 mdp.setMatA(mdp.getInput('Default'))
 
 
 else: ret = inp
 return ret
 
 if __name__ == "__main__":
 np.set_printoptions(suppress=True)
 mdp = MatrixDecomp()
 mdp.Show_Process = False
 mdp.setMatA(mdp.getInput('Default'))
 
 print mdp.MatA
 Ans = mdp.MatDecomp(mdp.getInput('Mode'))
 try:
 print '==========Answer Sheet=========='
 for (k,v) in Ans.items():
 print '> Matrix', k, '=\n', v
 except Exception,e:
 print e, '\n', Ans
 
 """
 E:\UCAS\矩阵分析与应用\BigHomework>python MatrixDecomp.py
 > Current Selection is: <Default>
 > Please show me the Matrix for Decomposition
 > It can be a list or path to a Matrix_File
 > Example: [[1,0],[0,1]] or "A.txt", "LU" etc.
 The Matrix is: "A.txt"
 [[  0. -20. -14.]
 [  3.  27.  -4.]
 [  4.  11.  -2.]]
 > Current Selection is: <Mode>
 > Please Select Decomposition Type
 > Example: LU GS HH or GV
 Type of the Matrix Decomposition is: GS
 ==========Answer Sheet==========
 > Matrix Q =
 [[ 0.   -0.8  -0.6 ]
 [ 0.6   0.48 -0.64]
 [ 0.8  -0.36  0.48]]
 > Matrix R =
 [[  5.  25.  -4.]
 [  0.  25.  10.]
 [  0.   0.  10.]]
 """
 
 |